Abstract

A nonlinear optical fiber loop mirror (NOLM) adapted for all-optical 2R operation at ultrahigh bit-rates was experimentally and theoretically investigated. The proposed NOLM was created by adding inline/external fiber polarizers and also an inline optical phase-bias compensator (OPBC) to a standard NOLM. A theoretical investigation revealed that the operation of the standard NOLM became unstable due to residual polarization crosstalk of the polarization-maintaining optical components making up the NOLM, and that it could be dramatically improved with the inline/external polarizers. The NOLM with the polarizers ensured stable switching operation with high switching-dynamic-range (> 30dB) against the change of the wavelength of the input clock pulses, and the change of the environment temperature. We also experimentally verified that the OPBC played a dramatic role to ensure excellent dynamic switching performance of the NOLM, and to achieve signal-Q-recovery of the regenerated signals. All optical 2R experiments at 40Gb/s and 160Gb/s were performed with the modified NOLM. Signal regeneration with improved extinction ratio and signal Q value was successfully demonstrated. Q-recovery to the input of the control pulses degraded with ASE noise accumulation was also successfully achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call