Abstract
Co-MOF (cobased metal-organic frame) nanosheets were developed onto the surface of PBO (poly(p-phenylene benzobisoxazole)) fabric, and OMMT (modified montmorillonite) was incorporated into phenolic resin synergistically to improve the wear resistance of PBO/phenolic resin composites. Co-MOF nanosheets with a large specific surface area exhibited strong interlocking and excellent compatibility between the fabric and resin. In addition, OMMT possessed excellent affinity with phenolic resin and a larger lamellar space, and then polymer chains could be conveniently entangled into interlayers, which further confined the movement of molecular chains caused by friction heat. In addition, a weak interlayer force was conducive to facilitating the formation of a uniform and robust transfer-film on the counterpart. It was demonstrated that the Co-MOF@PBO/OMMT composites presented optimal tribological behavior due to the synergistic effect between interfacial modification and OMMT reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.