Abstract

Research is still ongoing to establish accurate models to predict the ultimate capacity of carbon fiber reinforced polymer (CFRP) repaired Reinforced Concrete (RC) beams, despite the numerous studies that have been conducted in this area. Previous studies suggested that more research is needed to better understand concrete behavior at flexural and shear, as well as the interaction between RC beams and externally bonded CFRP sheets. This study aims to experimentally validate the equations provided by the ACI 440.2 code for calculating the ultimate flexural and shear capacity of damaged RC beams repaired with CFRP sheets. The two design criteria for flexural capacity are the minimum and maximum steel ratios. Likewise, the two design criteria for shear capacity are having and not having shear stirrups. Moreover, two shear locations are investigated as the shear capacity at the quarter-span and shear capacity at 1.5d (d is the beam depth from supports). Finally, modified models are proposed to calculate the flexural and shear capacities, considering the contributions from other parameters to better correlate with the experimental results. The study concluded that the current ACI models result in differences from experimental results of up to 21%, 64% and 25% for flexural capacity, shear capacity at quarter-span and shear capacity at 1.5d, respectively. The modified models result in differences from experimental models of 6.9%, 2% and 7.3% for flexural capacity, shear capacity at quarter-span and shear capacity at 1.5d, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.