Abstract
Using a catalyst to mineralize volatile organic compounds (VOCs) in a Non-thermal Plasma (NTP) reactor is an effective method. In many kinds of catalysts for VOCs degradation, oxygen defect is a crucial factor affecting the catalytic activity. Three different methods (steaming, doping, plasma) were used to introduce possible oxygen defects into the Mn/ZSM-5 to prepare modified catalysts, which were evaluated in VOCs degradation activity using a Double Dielectric Barrier Discharge (DDBD) plasma device. Additionally, a novel Y-type ZSM-5 model was employed in the DFT simulation. The new Y-type ZSM-5 model used in this paper is a more realistic aperiodic model. It showed that introducing possible oxygen defects can substantially enhance degradation efficiency. Taking the catalyst with oxygen defects introduced by plasma as an example, the conversion (CO2 selectivity) of the methanol, acetone, and toluene could reach 100% (100%), 97.7% (99.1%), 91.2% (93.9%), respectively, at an initial concentration of 2000 ppm and specific input energy of 9 kJ/L. The results demonstrated that modification could significantly enhance the activity of the catalyst in decomposing VOCs at room temperature using non-thermal plasma catalysis. Theoretical simulation of density functional theory (DFT) revealed that the adsorption of adsorbate on the catalyst becomes easier after possible oxygen defects are introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.