Abstract

Reconfigurable non-uniform channel filters are now being widely used in software define radio (SDR). The hardware implementation of these filters requires low complexity, low chip area and low power consumption. The frequency response masking (FRM) approach is proved to be a good candidate for the realization of a sharp digital finite impulse response (FIR) filter with low complexity. To reduce the complexity further, this paper gives an optimal design method which makes the channel filters totally multiplier-less. This is done in two steps. The channel filters are designed using the FRM approach with continuous filter coefficients. To obtain multiplier-less design, these filter coefficients are converted to finite-precision coefficients using signed power of two (SPT) space and the filter coefficients are synthesized in the canonic signed-digit (CSD) format. But this may lead to degradation of the filter performance. Hence the filter coefficients synthesis in the CSD format is formulated as an optimization problem. Several meta-heuristic algorithms like Differential Evolution (DE), Artificial Bee Colony (ABC), Harmony Search Algorithm (HSA) and Gravitational Search Algorithm (GSA) are modified and deployed and the best one is selected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.