Abstract

This study investigates the anticancer effects of SPION-based silica nanocarriers carrying 5-fluorouracil (5-FU) or oxaliplatin (OX), and metformin (MET) on colorectal cancer cells. Nanocarriers were equipped with pH-responsive gold gatekeepers for controlled release, PEGylation for longer circulation, and folic acid (FA) for targeted delivery. The effects were evaluated by investigating cell viability, cellular uptake, flow cytometry, and clonogenic assay in vitro. The efficacy of the system was also tested in vivo on C57BL/6 mice bearing HT-29 tumors, and potential side effects were evaluatedNanocarriers were synthesized with hydrodynamic diameters of 79.8 nm for 5-FU and 85.2 nm for OX; zeta potentials of −21 and –22 mV, respectively, and remained stable after 72 h. Encapsulation efficiencies were 85 % for 5-FU, 80 % for OX, and 83 % for MET, with loading capacities of 44 %, 38 %, and 41 %, respectively. Drug release in acidic buffer was 38.7 % for 5-FU, 32.8 % for OX, and 43.5 % for MET. MTT assay showed increased toxicity due to FA conjugation, while PEGylation reduced the hemolysis activity. Targeted nanocarriers demonstrated superior cellular uptake and tumor localization compared to non-targeted variants. The combination of 5-FU-MET and OX-MET nanocarriers with radiation therapy (RT) demonstrated the greatest effect on their antitumor activity, accompanied by minimal side effects indicating effective tumor targeting in vivo. MRI and CT imaging further supported these findings. This study underscores the synergistic impact of MET alongside RT on the inhibition of cancer cells and tumor growth for both targeted 5-FU and OX nanocarriers reflecting the significant radiosensitizing properties of MET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.