Abstract

Cepstral mean and variance normalization (CMVN) is an efficient noise compensation technique popularly used in many speech applications. CMVN eliminates the mismatch between training and test utterances by transforming them to zero mean and unit variance. In this work, we argue that some amount of useful information is lost during normalization as every utterance is forced to have the same first- and second-order statistics, i.e., zero mean and unit variance. We propose to modify CMVN methodology to retain the useful information and yet compensate for noise. The proposed normalization approach transforms every test utterance to utterance-specific clean mean (i.e., utterance mean if the noise was absent) and clean variance, instead of zero mean and unit variance. We derive expressions to estimate the clean mean and variance from a noisy utterance. The proposed normalization is effective in the recognizing voice commands that are typically short (single words or short phrases), where more advanced methods [such as histogram equalization (HEQ)] are not effective. Recognition results show a relative improvement (RI) of $$21\,\%$$21% in word error rate over conventional CMVN on the Aurora-2 database and a RI of 20 and $$11\,\%$$11% over CMVN and HEQ on short utterances of the Aurora-2 database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.