Abstract

MgO/Ag nanoparticles (NPs) were surface-modified with titanate coupling agent titaniumtriisostearoylisopropoxide (NDZ-130). A new antibacterial biofilm for food packaging was synthesized by combining the modified MgO/Ag NPs with poly (butylene succinate-co-terephthalate) (PBST). The modification improved the compatibility between the MgO/Ag NPs and the PBST matrix. The effects of the modified MgO/Ag NPs on biofilm mechanical, barrier, thermal, antibacterial and food preservation properties were evaluated. Compared with the PBST/MgO/Ag composite film, the modified PBST/MgO/Ag composite film showed an increase in tensile strength (TS) of 8.71% and elongation at break (EB) of 16.66%, additionally decreasing water vapor permeability (WVP) by 42.86%. The composite film also exhibited over 95% inhibition of Staphylococcus aureus and Escherichia coli. The modified PBST/MgO/Ag composite film avoided microbial contamination and preserved cherry tomatoes while maintaining moisture and firmness for six days. All results indicated that the prepared biofilms have a high potential for use as food packaging films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call