Abstract

Purpose – The purpose of this paper is to prepare a higher chloromethylation degree (CD) modified macroporous adsorption resin (MAR, LX1180-Cl) and further study their adsorption performance. Design/methodology/approach – CD and crosslinking degree were evaluated using stationary potential step and rotating-disk method, the adsorption performance of LX1180-Cl and LX1180 for flavonoids were studied using the UV-VIS spectrophotometry. Findings – This research realized high CD (9.6 mass %) on high crosslinking MAR, LX1180. In tandem, the adsorption performance of them to flavonoids finds that the matching degree of polarity (presented with CD) and size were the critical factor to adsorption. It was also found that the reaction time had reduced to 24 h with the addition of iron particles into the zinc chloride (ZnCl2) catalyst. Research limitations/implications – The study on reaction mechanism and the function principle of hybrid catalyst were speculated, but not the rigid experimental result. Practical implications – This contribution can provide a rule for the separation and purification of natural products with the aim to improve food additive removal or isolation and purification of flavonoids used for healthcare applications. Originality/value – This contribution provided a novel way to obtain high degree of CD with high crosslinking MAR, CD of commercially available MAR was improved by 2.5 times to 9.6 percent under crosslinking degree at 58.2 percent, compared with reported CD value (ca. 4.2 percent under crosslinking degree at 20.0 percent), which will be useful in the following further systematically research about the adsorption and separation selectivity of MAR. Besides, the primitive chosen principle of MAR according to the substrate was also presented. Moreover, the chloromethylation mechanism, although speculative, was briefly presented, which will stimulate the related study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.