Abstract

Transition region-based thresholding is a newly developed image binarization technique. Transition region descriptor plays a key role in the process, which greatly affects accuracy of transition region extraction and subsequent thresholding. Local entropy (LE), a classic descriptor, considers only frequency of gray level changes, easily causing those non-transition regions with frequent yet slight gray level changes to be misclassified into transition regions. To eliminate the above limitation, a modified descriptor taking both frequency and degree of gray level changes into account is developed. In addition, in the light of human visual perception, a preprocessing step named image transformation is proposed to simplify original images and further enhance segmentation performance. The proposed algorithm was compared with LE, local fuzzy entropy-based method (LFE) and four other thresholding ones on a variety of images including some NDT images, and the experimental results show its superiority.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.