Abstract

Knee joint disorders are common in the elderly population, athletes, and outdoor sports enthusiasts. These disorders are often painful and incapacitating. Vibration signals [vibroarthrographic (VAG)] are emitted at the knee joint during the swinging movement of the knee. These VAG signals contain information that can be used to characterize certain pathological aspects of the knee joint. In this paper, we present a noninvasive method for screening knee joint disorders using the VAG signals. The proposed approach uses wavelet packet decompositions and a modified local discriminant bases algorithm to analyze the VAG signals and to identify the highly discriminatory basis functions. We demonstrate the effectiveness of using a combination of multiple dissimilarity measures to arrive at the optimal set of discriminatory basis functions, thereby maximizing the classification accuracy. A database of 89 VAG signals containing 51 normal and 38 abnormal samples were used in this study. The features extracted from the coefficients of the selected basis functions were analyzed and classified using a linear-discriminant-analysis-based classifier. A classification accuracy as high as 80% was achieved using this true nonstationary signal analysis approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.