Abstract
We present an improved ab initio time-dependent density-functional theory (TDDFT) approach to electronic excitations. A conventional TDDFT scheme within the local-density approximation (LDA) inaccurately predicts Rydberg and charge-transfer excitation energies, mainly because the electron-hole $(e\text{\ensuremath{-}}h)$ interaction is inappropriately described in these excitations, as can be found by analyzing the linear response formula [M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)]. When the formula is averaged over the electron occupation, the inappropriate $e\text{\ensuremath{-}}h$ interaction within LDA is corrected to become explicitly similar to that of the exact exchange system. As anticipated from the similarity, our proposed scheme of modified linear response greatly improves the prediction of the problematic excitations, which are exemplified for typical molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.