Abstract

Linear discriminant analysis (LDA) is one of the most popular methods of classification. For high-dimensional microarray data classification, due to the small number of samples and large number of features, classical LDA has sub-optimal performance corresponding to the singularity and instability of the within-group covariance matrix. Two modified LDA approaches (MLDA and NLDA) were applied for microarray classification and their performance criteria were compared with other popular classification algorithms across a range of feature set sizes (number of genes) using both simulated and real datasets. The results showed that the overall performance of the two modified LDA approaches was as competitive as support vector machines and other regularized LDA approaches and better than diagonal linear discriminant analysis, k -nearest neighbor, and classical LDA. It was concluded that the modified LDA approaches can be used as an effective classification tool in limited sample size and high-dimensional microarray classification problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.