Abstract

This article deals with the problem of testing for two normal sub-mean vectors when the data set have two-step monotone missing observations. Under the assumptions that the population covariance matrices are equal, we obtain the likelihood ratio test (LRT) statistic. Furthermore, an asymptotic expansion for the null distribution of the LRT statistic is derived under the two-step monotone missing data by the perturbation method. Using the result, we propose two improved statistics with good chi-squared approximation. One is the modified LRT statistic by Bartlett correction,and the other is the modified LRT statistic using the modification coefficient by linear interpolation. The accuracy of the approximations are investigated by using a Monte Carlo simulation. The proposed methods are illustrated using an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.