Abstract

In simulations of Couette shear flow by dissipative particle dynamics (DPD) method, applying traditional Lees–Edwards boundary condition (LEC) in conjunction with velocity-dependent thermostats may result in artefacts in the form of velocity jumps. This artefact was observed at extreme dissipation rates (), and a modified LEC (M-LEC) was introduced to correct that unconditionally (A. Chatterjee, Modification to Lees–Edwards periodic boundary condition for dissipative particle dynamics simulation with high dissipation rates, Mol Simul, 33:1233–1236, 2007). Here we have studied some unexplored effects of using LEC under high shear rate regimes, not only on velocity profiles but also on temperature control. Given a correct temperature () control, the maximum applicable and effective shear velocity, shear rate, dynamic viscosity and Péclet number achievable under both LEC and M-LEC methods are extracted and discussed rigorously. We also show that despite partial success of M-LEC to impose the intended shear rate to the system, it still has some limitations in certain conditions. Here we have explored the advantages and shortcomings of M-LEC on the functionality of DPD thermostat and the calculated rheological properties in moderate to high shear rates and for various weight function exponents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call