Abstract

Based on the Kosterlitz-Thouless (KT) phase transition model of two-dimensional systems, by introducing the thermal activation energy and the mean height of the pinning landscape into the correlation length, a modified KT transition model has been proposed to study the temperature dependence of the resistivity transition in anisotropic superconductors. This modified KT transition model is consistent with the Coulomb-Gas (CG) scaling law and the Halperin-Nelson relation. And it is applied to study the scaling behavior of the resistivity transition of Tl2Ba2CaCu2Ox (Tl-2212) thin film under various intensities of magnetic field. The calculated mean height of the pinning landscape from the resistivity curve depends on the temperature linearly, which supports the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.