Abstract

We study solitary-wave and kink-wave solutions of a modified Boussinesq equation through a multiple-time reductive perturbation method. We use appropriated modified Korteweg-de Vries hierarchies to eliminate secular producing terms in each order of the perturbative scheme. We show that the multiple-time variables needed to obtain a regular perturbative series are completely determined by the associated linear theory in the case of a solitary-wave solution, but requires the knowledge of each order of the perturbative series in the case of a kink-wave solution. These appropriate multiple-time variables allow us to show that the solitary-wave as well as the kink-wave solutions of the modified Botussinesq equation are actually respectively a solitary-wave and a kink-wave satisfying all the equations of suitable modified Korteweg-de Vries hierarchies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.