Abstract

The kinetic rate equation (KRE) model, unlike the population balance equation model, can describe growth, nucleation, and even Ostwald ripening simultaneously. However, the KRE model cannot be applied in cooling crystallization systems. In this work, we propose a modified KRE model to describe cooling crystallization. The modified KRE model can successfully describe crystal growth and nucleation in cooling crystallization systems. In addition, the metastable zone width was simulated using the modified KRE model and compared with the experimental data in references. The results revealed that the modified KRE model could express the effect of overheating prior to cooling on the metastable zone width. As the extent of overheating increases, the metastable zone width becomes wider, which phenomenon can be clearly simulated by the modified KRE model. This modeling capability is attributed to the behavior of particle clusters that are sized less than the size of sub-nuclei. Because the population balance equation model cannot describe the metastable zone width, the modified KRE model has certain competitive advantages in its application to various crystallization systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.