Abstract
This paper presents a lag-1 modified K-nearest neighbor (K-NN) approach for stochastic streamflow simulation. The simulation at any time t given the value at the time t−1 involves two steps: (1) obtaining the conditional mean from a local polynomial fitted to the historical values of time t and t−1, and (2) then resampling (i.e., bootstrapping) a residual at one of the historical observations and adding it to the conditional mean. The residuals are resampled using a probability metric that gives more weight to the nearest neighbor and less to the farthest. The “residual resampling” step is the modification to the traditional K-NN time-series bootstrap approach, which enables the generation of values not seen in the historical record. This model is applied to monthly streamflow at the Lees Ferry stream gauge on the Colorado River and is compared to both a parametric periodic autoregressive and a nonparametric index sequential method for streamflow generation, each widely used in practice. The modified K-NN approach is found to exhibit better performance in terms of capturing the features present in the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.