Abstract

The conventional mechanisms transmitted force and displacement through rigid members (high stiffness) and traditional joints (with high softness), where recently, researchers have come up with new systems called compliant mechanisms that transfer power and mobility through the deformation of their flexible members. One of the most frequently used approaches for designing compliant mechanisms is topology optimization. Extracting the optimal design of a displacement amplifying compliant mechanism using the modified Invasive Weed Optimization (MIWO) method is the current study's main novelty. The studied mechanism is a compliant micro-mechanism that can be used as a micrometric displacement amplifier. The goal of this synthesis is to maximize the output-to-input displacement ratio. In this research, a new random step is added to the Invasive Weed Optimization (IWO) method; the new seeds can be spread farther from their parents, which can be improved the algorithm's abilities. The results show that the use of the modified IWO algorithm for this problem has led to a significant improvement over the results from similar articles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.