Abstract

A mechanochemical method was employed to prepare modified iron molybdate catalysts with various metal salts as precursors. The physicochemical properties of the iron molybdate catalysts were characterized, and their performances in catalyzing the reaction from methanol to formaldehyde (HCHO) were evaluated. Iron molybdate catalysts doped with Co(NO3)2 · 6H2Oand Al(NO3)3 · 9H2O resulted in high HCHO yields. Compared with a commercial catalyst, the HCHO yields in the reaction with the modified catalyst at an optimal Co/Mo molar ratio reached 97.37%. According to chemical state analysis, the formation of CoO and the efficient decrease in the MoO3 sublimation rate could be important factors enhancing the HCHO yield in reactions catalyzed with iron molybdate doped with different Co/Mo mole ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call