Abstract
The main difficulty in numerical solution of integral equations of electrodynamics is associated with the need to solve a high-order system of linear equations with a dense matrix. It is therefore relevant to develop numerical methods that lead to linear equation systems of lower order at the cost of more complex evaluation of the coefficients. In this article we propose a method for solving linear equations of electrodynamics which is a modification of the integral current method. The main distinctive feature of the proposed method is double integration of the electric Green's tensor in the process of algebraization of the original integral equation. The solutions of the system of linear equations are thus integral means of the electric field inside the anomaly constructed by the proposed transformation formula. We prove convergence and derive error bounds for both the solution of the integral equation and the electromagnetic field components evaluated from approximate transformation formulas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.