Abstract

During the increment of solar irradiation, the conventional incremental conductance algorithm responds inaccurately at the first step change in the converter duty cycle. This paper presents the conventional algorithm confusion and proposes a modified incremental conductance algorithm that responds accurately when the solar irradiation level increases. Moreover, the proposed algorithm shows zero oscillation in the power of the solar module after the maximum power point (MPP) is tracked. MATLAB simulation is carried out with the modified incremental conductance algorithm under a fast-changing solar irradiation level. Results of the modified, conventional and variable step size incremental conductance algorithms are compared. Finally, the hardware implementation, consisting of a single-ended primary-inductor converter (SEPIC) and a PIC controller, is applied as the maximum power point tracking (MPPT) controller. The simulation and experimental works showed that the proposed algorithm performs accurately and faster during the increment of solar irradiation level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.