Abstract

In this paper we propose several modified hybrid projection methods for solving common solutions to variational inequality problems involving monotone and Lipschitz continuous operators. Based on differently constructed half-spaces, the proposed methods reduce the number of projections onto feasible sets as well as the number of values of operators needed to be computed. Strong convergence theorems are established under standard assumptions imposed on the operators. An extension of the proposed algorithm to a system of generalized equilibrium problems is considered and numerical experiments are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.