Abstract

Because of the rapid advancement of the airborne sensors and spaceborne sensors, large volumes of fully polarimetric synthetic aperture radar (PolSAR) data are available, but they are too complex to interpret difficultly. In this paper, a modified hybrid Freeman/eigenvalue decomposition method for the coherency matrix derived from the fully PolSAR sensors is proposed. The proposed modified hybrid Freeman/eigenvalue decomposition uses a real unitary transformation on the coherency matrix to release correlations between the copolarized term and cross polarized term, and the scattering models are derived from eigenvectors of the coherency matrix with reflection symmetry condition. The anisotropy and entropy are used to determine whether the volume scattering component is derived from the man-made structures or not. Moreover, the scattering powers from the proposed hybrid Freeman/eigenvalue decomposition are all nonnegative values. Fully PolSAR data on San Francisco acquired by AIRSAR sensor are used in the experiments to prove the efficacy of the proposed decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.