Abstract

BackgroundExperimentally brought to light by Russell and hypothetically explained by Korteweg–de Vries, the KDV equation has drawn the attention of several mathematicians and physicists because of its extreme substantial structure in describing nonlinear evolution equations governing the propagation of weakly dispersive and nonlinear waves. Due to the prevalent nature and application of solitary waves in nonlinear dynamics, we discuss the soliton solution and application of the fractional-order Korteweg–de Vries (KDV) equation using a new analytical approach named the “Modified initial guess homotopy perturbation.”ResultsWe established the proposed technique by coupling a power series function of arbitrary order with the renown homotopy perturbation method. The convergence of the method is proved using the Banach fixed point theorem. The methodology was demonstrated with a generalized KDV equation, and we applied it to solve linear and nonlinear fractional-order Korteweg–de Vries equations, which are in Caputo sense. The method’s applicability and effectiveness were established as a feasible series of arbitrary orders that accelerate quickly to the exact solution at an integer order and are obtained as solutions. Numerical simulations were conducted to investigate the effect of Caputo fractional-order derivatives in the dispersion and propagation of water waves by varying the order alpha on the [0,1] interval. Comparative analysis of the simulation results, which were presented graphically and discussed, reveals that the degree of freedom of the Caputo fractional-order derivative is vital to controlling the magnitude of environmental hazards associated with water waves when adjusted.ConclusionThe proposed method is recommended for obtaining convergent series solutions to fractional-order partial differential equations. We suggested that applied mathematicians and physicists investigate this work to better understand the impact of the degree of freedom posed by Caputo fractional-order derivatives in wave dispersion and propagation, as physical applications can help divert wave-related environmental hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.