Abstract
Segmentation of moving objects in image sequences is a fundamental step in many computer vision applications such as mineral processing industry and automated visual surveillance. In this paper, we introduce a novel approach to detect moving objects in a noisy background. Our approach combines a modified adaptive Gaussian mixture model (GMM) for background subtraction and optical flow methods supported by temporal differencing in order to achieve robust and accurate extraction of the shapes of moving objects. The algorithm works well for image sequences having many moving objects with different sizes as demonstrated by experimental results on real image sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.