Abstract
SummaryIn order to capture the material interface dynamics, especially under the impact of strong shocks, the key feature of the modified ghost fluid method (MGFM) is to construct a multimaterial Riemann problem normal to the interface and use its solution to define interface conditions. However, such process sometimes may not be easily or accurately implemented when the multidimensional interfaces come into contact or undergo significant deformations. In this article, a three‐dimensional interface treating procedure is developed for a wide range of compressible multimaterial flows. It utilizes the MGFM with an explicit approximate Riemann problem solver to define interface conditions. More importantly, a weighted average technique is designed to optimize the treatment for interfaces exhibiting large curvature and topological change. This remedies two defects of the traditional approach in these extreme cases. One is that the normal directions of interfacial ghost nodes may not be easily calculated. The other is that the interface conditions may not be accurately defined. The numerical methodology is validated through several typical problems, including gas‐liquid Riemann problem and shock‐bubble/droplet interaction. These results indicate that the developed method is capable of dealing with interfacial evolutions in three dimensions, especially when interfaces undergo merger, fragmentation, and other complex changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.