Abstract

This paper presents a new fractional-order hyperchaotic system. The chaotic behaviors of this system in phase portraits are analyzed by the fractional calculus theory and computer simulations. Numerical results have revealed that hyperchaos does exist in the new fractional-order four-dimensional system with order less than 4 and the lowest order to have hyperchaos in this system is 3.664. The existence of two positive Lyapunov exponents further verifies our results. Furthermore, a novel modified generalized projective synchronization (MGPS) for the fractional-order chaotic systems is proposed based on the stability theory of the fractional-order system, where the states of the drive and response systems are asymptotically synchronized up to a desired scaling matrix. The unpredictability of the scaling factors in projective synchronization can additionally enhance the security of communication. Thus MGPS of the new fractional-order hyperchaotic system is applied to secure communication. Computer simulations are done to verify the proposed methods and the numerical results show that the obtained theoretic results are feasible and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.