Abstract

A modified Gaussian wave packet relaxation method is proposed to calculate the ground state wave function using an expansion of frozen Gaussian wave packets. This new procedure consists of two steps. In the first step, a multidimensional Gaussian product placed at the ground state equilibrium geometry is propagated in imaginary time. The relaxation optimizes the widths of the one-dimensional Gaussians. In the second step, additional Gaussian wave packets with the same widths are placed near the equilibrium geometry, and the corresponding expansion coefficients are optimized using the same relaxation method. This new algorithm is tested in photodissociation of NOCl and NH3, and the results show good agreement with the exact results in the energy, wave function, and absorption spectrum. In particular, the highly structured absorption spectrum of NH3 is reproduced, underscoring the accuracy of both the initial wave packet and the excited state propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call