Abstract

In this paper, a modified full bridge dual inductive coupling (LCL) resonant converter for electric vehicles (EVs) battery charging applications is proposed. The main objective of the proposed topology is to operate the converter in constant voltage (CV) and constant current (CC) mode during battery charging. The presented topology's uniqueness comprises the following: i) isolated charging and power factor correction (PFC), ii) to achieve zero-voltage switching (ZVS) and zero-current switching (ZCS) for inverter switches, iii) reduction of number of rectifier diodes to reduce the conduction and switching losses, and iv) reducing the magnetizing current. The output voltage dependence of resonant converter is reduced using a PFC converter against the variations of the alternating current (AC) grid input voltage. The variations of the wide range output voltage and load is compensated by a small variation in switching frequency. The proposed topology's detailed operation is simulated using the MATLAB/Simulink tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.