Abstract
Foreign body reaction (FBR) causes unexpected adverse effects due to implanted materials in humans and animals. Inflammation and subsequent fibrosis during FBR seems to be affected by recipient immunity, such as the balance of T helper (Th) response that has the potential to regulate FBR-related macrophage function. Here, the immunological effects of FBR on subcutaneously imbedded silicone tubes (ST) at 8 weeks were investigated histologically by comparing Th1-biased C57BL/6N, Th2-biased MRL/MpJ, and autoimmune disease-prone MRL/MpJ-Faslpr/lpr . Tissue surrounding ST (TSS) was analyzed at day (D) 7 and 14 (reaction phase) or D35 (stability phase) after surgery. In all strains, the TSS was composed of a thin layer (TL) containing fibrous tissues and loose connective tissues formed outside the TL. Few lymphocytes and mast cells, several neutrophils, and numerous macrophages infiltrated the TSS. Active vascularization was observed at D14 in all strains. For the examined indices, M1-type macrophage density in the TSS of C57BL/6N mice was significantly higher at D14 compared to other strains. No significant strain difference relating to M2-type macrophages was detected, suggesting the effects of Th1-biased immunity on FBR-related inflammation. Collagen fibers in the TSS increased in density and became stable with age in all strains. In particular, MRL/MpJ-Faslpr/lpr showed progressive fibrotic features. Serum autoantibody levels in MRL/MpJ-Faslpr/lpr mice were inversely correlated with M1-type macrophage density. These data from MRL/MpJ-Faslpr/lpr mice suggested modifications of FBR-related inflammation and fibrosis by autoimmune abnormalities. The results provide crucial insights into the pathological modification of FBR by recipient immunity and emphasize its clinicopathological importance in humans and animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.