Abstract

An updated method for simulating the scattered fields from a dispersive Huygens’ metasurface using the explicit finite-difference time-domain technique has been proposed and numerically demonstrated. The method uses a spatial–temporal averaging of the electric and magnetic fields, using virtual sources in a standard Yee cell grid. This creates a nonparaxial implementation of the generalized sheet transition conditions in the time domain and rigorously solves the scattered fields in reflection and transmission regions separately. The metasurfaces are solved for Lorentzian susceptibilities, and the proposed method is successfully demonstrated using two examples: a uniform metasurface with a strongly divergent beam and a space-modulated metasurface emulating a diffraction grating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.