Abstract

The in vitro differentiation of ES cells towards a hematopoietic cell fate is useful when studying cell populations that are difficult to access in vivo and for characterizing the earliest genes involved in hematopoiesis, without having to deal with embryonic lethalities. The ES/OP9 co-culture system was originally designed to produce hematopoietic progeny, without the over production of macrophages, as the OP9 stromal cell line is derived from the calvaria of osteopetrosis mutant mice that lack functional M-CSF. The in vitro ES/OP9 co-culture system can be used in order to recapitulate early hematopoietic development. When cultured on OP9 stromal cells, ES cells differentiate into Flk-1+ hemangioblasts, hematopoietic progenitors, and finally mature, terminally differentiated lineages. The standard ES/OP9 co-culture protocol entails the placement of ES cells onto a confluent layer of OP9 cells; as well as, periodic replating steps in order to remove old, contaminating OP9 cells. Furthermore, current protocols involve evaluating only the hematopoietic cells found in suspension and are not optimized for evaluation of ES-derived progeny at each day of differentiation. However, with replating steps and the harvesting of only suspension cells one potentially misses a large portion of ES-derived progeny and developing hematopoietic cells. This issue becomes important to address when trying to characterize hematopoietic defects associated with knockout ES lines. Here we describe a modified ES/mStrawberry OP9 co-culture, which allows for the elimination of contaminating OP9 cells from downstream assays. This method allows for the complete evaluation of all ES-derived progeny at all days of co-culture, resulting in a hematopoietic differentiation pattern, which more directly corresponds to the hematopoietic differentiation pattern observed within the embryo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call