Abstract

We derive verified error bounds for approximate solutions of dense linear systems. There are verification methods using an approximate inverse of a coefficient matrix as a preconditioner, where the preconditioned coefficient matrix is likely to be anH-matrix (also known as a generalized diagonally dominant matrix). We focus on two inclusion methods of matrix multiplication for the preconditioning and propose verified error bounds adapted to the inclusion methods. These proposed error bounds are tighter than conventional ones, especially in critically ill-conditioned cases. Numerical results are presented showing the effectiveness of the proposed error bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.