Abstract

Interatomic potentials for pure Zn and Mg–Zn binary system have been developed on the basis of the second nearest-neighbor modified embedded-atom method formalism. The potentials describe fundamental material properties of pure Zn (bulk, defect, and thermal properties) reasonably and reproduce the alloy behavior (thermodynamic, structural, and elastic properties of compounds and solution phases) of Mg-Zn alloys well in good agreement with experiments, first-principles and CALPHAD. The applicability of the developed potentials to atom-scale investigations on the slip behavior of Mg-Zn alloys is also demonstrated by showing that the calculated effects of Zn on the general stacking fault energy on the basal, prismatic and pyramidal planes are consistent with first-principles calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.