Abstract

Valence change-type resistance switching behaviors in oxides can be understood by well-established physical models describing the field-driven oxygen vacancy distribution change. In those models, electroformed residual oxygen vacancy filaments are crucial as they work as an electric field concentrator and limit the oxygen vacancy movement along the vertical direction. Therefore, their movement outward by diffusion is negligible. However, this situation may not be applicable in the electroforming-free system, where the field-driven movement is less prominent, and the isotropic oxygen vacancy diffusion by concentration gradient is more significant, which has not been given much consideration in the conventional model. Here, we propose a modified physical model that considers the change in the oxygen vacancies' charged state depending on their concentrations and the resulting change in diffusivity during switching to interpret the electroforming-free device behaviors. The model suggests formation of an hourglass-shaped filament constituting a lower concentration of oxygen vacancies due to the fluid oxygen diffusion in the thin oxide. Consequently, the proposed model can explain the electroforming-free device behaviors, including the retention failure mechanism, and suggest an optimized filament configuration for improved retention characteristics. The proposed model can plausibly explain both the electroformed and the electroforming-free devices. Therefore, it can be a standard model for valence change memristors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.