Abstract

In this work, we consider dispersion laws of spin waves that propagate in a ferromagnet/superconductor bilayer, specifically in a ferromagnetic film coupled inductively to a superconductor. The coupling is viewed as an interaction of a spin wave in a ferromagnetic film with its mirrored image generated by the superconductor. We show that, in general, the coupling enhances substantially the phase velocity of magnons in in-plane spin wave geometries. In addition, a heavy nonreciprocity of the dispersion law is observed in the magnetostatic surface spin wave geometry where the phase velocity depends on the direction of the wave propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.