Abstract

The Firefly Algorithm (FA) has a few disadvantages in solving the constrained global optimization problem, including that it is difficult to produce initial population, the size of relative attractiveness has nothing to do with the absolute brightness of fireflies, the inertia weight does not take full advantage of the information of objective function, and it cannot better control and constrain the mobile distance of firefly. In this paper, we propose a novel method based on discrete firefly algorithm combining genetic algorithm for traveling salesman problem. We redefine the distance of firefly algorithm by introducing swap operator and swap sequence to avoid algorithm easily falling into local solution and accelerate convergence speed. In addition, we adopt dynamic mechanism based on neighborhood search algorithm. Finally, the comparison experiment results show that the novel algorithm can search perfect solution within a short time, and greatly improve the effectiveness of solving the traveling salesman problem, it also significantly improves computing speed and reduces iteration number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.