Abstract

Rare earth elements (REEs) are crucial for green energy applications due to their unique properties, but their extraction poses sustainability challenges because the global supply of REEs is concentrated in a few countries, particularly China, which produces 70% of the world’s REEs. To address this, the study investigated TK221, a modified extraction chromatographic resin featuring diglycolamide (DGA) and carbamoyl methyl phosphine oxide (CMPO), as a promising adsorbent for REE recovery. The elemental composition and functional groups of DGA and CMPO on the polystyrene-divinylbenzene (PS-DVB) support of TK221 were confirmed using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of neodymium (Nd), yttrium (Y), cerium (Ce), and erbium (Er) followed the pseudo-second-order kinetic model and Langmuir isotherm, indicating monolayer chemisorption. Furthermore, iron (Fe) adsorption reached apparent equilibrium after 360 min, with consistent Fe adsorption observed at both 360 min and 1440 min. The inclusion of Fe in the study is due to its common presence as an impurity in most REE leachate solutions. The Fe adsorption isotherm results are better fitted with the Langmuir isotherm, implying chemisorption. Maximum adsorption capacities (qmax) of the resin were determined as follows: Nd (45.3 mg/g), Ce (43.1 mg/g), Er (35.1 mg/g), Y (15.6 mg/g), and Fe (12.3 mg/g). ATR-FTIR analysis after adsorption suggested that both C=O and P=O bands shifted from 1679 cm−1 to 1618 cm−1 and 1107 cm−1 to 1142 cm−1 for Y, and from 1679 cm−1 to 1607 cm−1 and 1107 cm−1 to 1135 cm−1 for Ce, implying possible coordination with REEs. These results suggest that TK221 has a huge potential as an alternative adsorbent for REE recovery, thus contributing to sustainable REE supply diversification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.