Abstract

The ferrimagnetic Co1.75Fe1.25O4 ferrite with cubic spinel structure (space group Fd3m) was made into composite by mixing with ferroelectric BaTiO3 perovskite with tetragonal structure (space group P4mm) at the mass ratio 50:50. Disc shaped composite powder was finally heated at 1000 °C to study the structure, dielectric and ferroelectric properties. The electrical conductivity, dielectric response and ferroelectric properties of the composite samples are remarkably modified in comparison to their ferrite counterparts before making the composite. The composite system has shown improvement of dielectric constant with reduced dielectric loss factor and electrical conductivity in comparison to the ferrite samples. The mechanism of modified dielectric properties was understood by analyzing ac conductivity data using Jonscher's power law, complex impedance spectra in Cole-Cole plots using equivalent circuit model, and complex electrical modulus spectra using Kohlrausch, Williams and Watts (KWW) proposed model. Electrical conductivity in the composite material was determined by small polaron hoping (SPH) up to measurement temperature 400 K (close to ferroelectric transition of BaTiO3) and overlapping large polaron hopping conductivity at higher temperatures. In contrast, SPH dominates throughout the measurement temperature range for ferrite samples. The space charge polarization, which was largely effective at low frequencies and high measurement temperatures, is significantly reduced in composite samples. High capacitive response in composite samples and its extension up to high measurement temperature is confirmed from the temperature dependence of phase shift and well defined ferroelectric polarization loop and associated electrical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.