Abstract
Effective-stress nonlinear dynamic analyses (NDA) were performed for piles in the liquefiable sloped ground to assess how inertia and liquefaction-induced lateral spreading combine in long- and short-duration motions. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of durations and amplitudes. The NDA results showed that the pile demands increased due to (a) longer duration shakings, and (b) liquefaction-induced lateral spreading compared to nonliquefied conditions. The NDA results were used to evaluate the accuracy of the equivalent static analysis (ESA) recommended by Caltrans/ODOT for estimating pile demands. Finally, the NDA results were used to develop new ESA methods to combine inertial and lateral spreading loads for estimating elastic and inelastic pile demands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: DFI Journal - The Journal of the Deep Foundations Institute
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.