Abstract

In the context of worldwide energetic transition, wind energy shows up as one of the most prominent renewable energy to provide an alternative for the conventional energy source. Therefore, new technologies of a wind turbine are developed, horizontal axis wind turbines have been extensively investigated and evolved. However, the development of vertical axis wind turbines is still an open and area of research, The main objective is to develop a more efficient type of wind turbines able to operate at low wind speeds to take hold maximum wind potential, The Savonius rotor goes with such conditions, however, it faces critical drawbacks, in particular, the low performance in comparison with horizontal axis wind turbines, as well, the blade in return of savonius wind turbine generates a negative torque leading to a decrement of turbine performance. The present work aims to investigate a modified model of the conventional Savonius rotors with a focus on improving the coefficient of power, transient computational fluid dynamics (CFD) simulations are carried out in an effort to perform a validation of numerical results according to experimental data, also to conduct a comparative analysis of both savonius models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call