Abstract
Let A be an annular end of a complete minimal surface S in Rm and let V be a k-dimension projective subvariety of Pn(C)(n=m−1). Let g be the generalized Gauss map of S into V⊂Pn(C). In this paper, we establish a modified defect relation of g on the annular end A for q hypersurfaces {Qi}i=1q of Pn(C) in N-subgeneral position with respect to V. Our result implies that the image g(A) cannot omit all q hypersurfaces Q1,…,Qq if g is nondegenerate over Id(V) and q>(2N−k+1)(M+1)(M+2d)2d(k+1), where M=HV(d)−1 and d is the least of common multiple of degQ1,…,degQq. As our best knowledge, it is the first time the value distribution of the Gauss map on an annular end of a minimal surfaces with hypersurface targets is studied, in particular the product into sum inequality for holomorphic curves on Riemann surfaces with hypersurfaces targets is presented. This our result has been used to study the unicity of the gauss maps in the recent work of C. Lu and X. Chen [14].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.