Abstract

In this work, we consider two modified Chevallier–Polarski–Linder (CPL) models in the background of homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) space–time, namely, (i) the generalized CPL model (Model I) and (ii) the logarithmic form of the equation of state for the dark energy. From the observational data sets [Formula: see text], we find that at the present epoch (redshift [Formula: see text]), the equation of state for the dark energy converges almost at the same value [Formula: see text] and the variation of [Formula: see text] with respect to the redshift parameter is very small for both models. We also find that the present value of the Hubble parameter [Formula: see text] is almost same for both the models. Finally, we compare the models in the light of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian evidence. However, we find that Model II is better compared to Model I from the estimated value of the deceleration parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.