Abstract

Electrically Assisted Forming (EAF) technology has obvious advantages in material forming. To develop an effective constitutive model considering electrical effects, room temperature and electrically assisted quasi-static uniaxial tensile tests were conducted using ultrathin nickel-based superalloy plates with a thickness of 0.25 mm. The research focused on the two most widely recognized effects: the Joule thermal and the electric athermal effects. The mechanism of current action can be divided into two scenarios: one considering the Joule thermal effect only, and the other considering both effects simultaneously. Two basic constitutive models, namely the Modified-Hollomon model and the Johnson-Cook (J-C) model, were selected to be optimized through the classification of two different situations, and four optimized constitutive models were proposed. It was found that the J-C model with simultaneous consideration of the Joule thermal effect and electric athermal effect had the best prediction effect by comparing the results of these four models. Finally, the accuracy of the optimization model was verified by finite element simulation of the electrically assisted stretching optimization model. The results show that the constitutive model can effectively predict the temperature effect caused by the Joule heat effect and the athermal effect of current on the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call