Abstract

Symbolic execution is an effective way of systematically exploring the search space of a program, and is often used for automatic software testing and bug finding. The program to be analyzed is usually compiled into a binary or an intermediate representation, on which symbolic execution is carried out. During this process, compiler optimizations influence the effectiveness and efficiency of symbolic execution. However, to the best of our knowledge, there exists no work on compiler optimization recommendation for symbolic execution with respect to (w.r.t.) modified condition/decision coverage (MC/DC), which is an important testing coverage criterion widely used for mission-critical software. This study describes our use of a state-of-the-art symbolic execution tool to carry out extensive experiments to study the impact of compiler optimizations on symbolic execution w.r.t. MC/DC. The results indicate that instruction combining (IC) optimization is the important and dominant optimization for symbolic execution w.r.t. MC/DC. We designed and implemented a support vector machine based optimization recommendation method w.r.t. IC (denoted as auto). The experiments on two standard benchmarks (Coreutils and NECLA) showed that auto achieves the best MC/DC on 67.47% of Coreutils programs and 78.26% of NECLA programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.