Abstract
In linear mixed models, the conditional Akaike Information Criterion (cAIC) is a procedure for variable selection in light of the prediction of specific clusters or random effects. This is useful in problems involving prediction of random effects such as small area estimation, and much attention has been received since suggested by Vaida and Blanchard (2005). A weak point of cAIC is that it is derived as an unbiased estimator of conditional Akaike Information (cAI) in the overspecified case, namely in the case that candidate models include the true model. This results in larger biases in the underspecified case that the true model is not included in candidate models. In this paper, we derive the modified cAIC (McAIC) to cover both the underspecified and overspecified cases, and investigate properties of McAIC. It is numerically shown that McAIC has less biases and less prediction errors than cAIC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.