Abstract

The efficiency in water treatment by granulated complexes formed from the clay bentonite with (i) micelles of the cations of octadecyltrimethyl-ammonium (ODTMA) or (ii) liposomes of didodecyldimethyl-ammonium (DDAB) was investigated. The bentonite–ODTMA complexes were synthesized in three variations: I. mass ratio of 68/32, which resulted in an excess of positive charge of half of the clay cation exchange capacity and is denoted “ordinary”; II. complexes having higher loads of ODTMA, denoted “enriched”; and III. “neutral”. These variations were designed to optimize the efficiency and reduce the costs of water treatment. “Ordinary” and “neutral” complexes of DDAB were also synthesized. The “ordinary” complex of ODTMA was shown to be efficient in the removal of anionic/hydrophobic molecules and bacteria. The “enriched” complexes were more active in removal of bacteria from water by filtration due to the higher release of free ODTMA cations, which causes biostatic/biocidal effects. The corresponding “ordinary” and “neutral” complexes of ODTMA and DDAB yielded the same efficiency in removal from water of the neutral and hydrophobic herbicides, S-metolachlor (i) and alachlor (ii), respectively. Model calculations, which considered sorption/desorption and convection yielded simulations and predictions of filtration results of the herbicides. The neutral complexes are advantageous since their production saves about 1/3 of the amount of ODTMA or DDAB, which constitutes the expensive component in the respective composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call