Abstract

We consider a spin-$j$ particle coupled to a structured bath of bosonic modes that decay into thermal baths. We obtain an analytic expression for the reduced spin state and use it to investigate non-Markovian spin dynamics. In the heavily overdamped regime, spin coherences are preserved due to a quantum Zeno affect. We extend the solution to two spins and include coupling between the modes, which can be leveraged for preservation of the symmetric spin subspace. For many spins, we find that inter-mode coupling gives rise to a privileged symmetric mode gapped from the other modes. This provides a handle to selectively address that privileged mode for quantum control of the collective spin. Finally, we show that our solution applies to defects in solid-state systems, such as NV$^{-}$ centres in diamond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call